Monte Carlo Q-learning for General Game Playing
نویسندگان
چکیده
Recently, the interest in reinforcement learning in game playing has been renewed. This is evidenced by the groundbreaking results achieved by AlphaGo. General Game Playing (GGP) provides a good testbed for reinforcement learning, currently one of the hottest fields of AI. In GGP, a specification of games rules is given. The description specifies a reinforcement learning problem, leaving programs to find strategies for playing well. Q-learning is one of the canonical reinforcement learning methods, which is used as baseline on some previous work (Banerjee & Stone, IJCAI 2007). We implement Q-learning in GGP for three smallboard games (Tic-Tac-Toe, Connect-Four, Hex). We find that Q-learning converges, and thus that this general reinforcement learning method is indeed applicable to General Game Playing. However, convergence is slow, in comparison to MCTS (a reinforcement learning method reported to achieve good results). We enhance Q-learning with Monte Carlo Search. This enhancement improves performance of pure Q-learning, although it does not yet out-perform MCTS. Future work is needed into the relation between MCTS and Q-learning, and on larger problem instances.
منابع مشابه
Monte-Carlo Tree Search for General Game Playing
We present a game engine for general game playing based on UCT, a combination of Monte-Carlo and tree search. The resulting program is named ARY. Despite the modest number of random games played by ARY before choosing a move, it scored quite well in the qualifying phase of the annual general game playing tournament hosted by AAAI.
متن کاملSimulation-Based Approach to General Game Playing
The aim of General Game Playing (GGP) is to create intelligent agents that automatically learn how to play many different games at an expert level without any human intervention. The most successful GGP agents in the past have used traditional game-tree search combined with an automatically learned heuristic function for evaluating game states. In this paper we describe a GGP agent that instead...
متن کاملSimulation Control in General Game Playing Agents
The aim of General Game Playing (GGP) is to create intelligent agents that can automatically learn how to play many different games at an expert level without any human intervention. One of the main challenges such agents face is to automatically learn knowledge-based heuristics in realtime, whether for evaluating game positions or for search guidance. In recent years, GGP agents that use Monte...
متن کاملLearning Simulation Control in General Game-Playing Agents
The aim of General Game Playing (GGP) is to create intelligent agents that can automatically learn how to play many different games at an expert level without any human intervention. One of the main challenges such agents face is to automatically learn knowledge-based heuristics in real-time, whether for evaluating game positions or for search guidance. In recent years, GGP agents that use Mont...
متن کاملMonte-Carlo Exploration for Deterministic Planning
Search methods based on Monte-Carlo simulation have recently led to breakthrough performance improvements in difficult game-playing domains such as Go and General Game Playing. Monte-Carlo Random Walk (MRW) planning applies MonteCarlo ideas to deterministic classical planning. In the forward chaining planner ARVAND, MonteCarlo random walks are used to explore the local neighborhood of a search ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.05944 شماره
صفحات -
تاریخ انتشار 2018